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ABSTRACT  

In this paper we report results from an exploratory study of design structures in scientific research 

software. Dependency Structure Matrix (DSM) is used as a modelling tool to capture and analyze 

dependencies among system elements such as functions. We compute several architectural complexity 

metrics and present preliminary results from two open-source scientific computing software 

applications. 
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1 INTRODUCTION 

 The utility of properties e.g., modularity and information hiding (Parnas, 1972) in complex software 

design is now widely recognized in software engineering community. An evolving software system 

needs to have a design architecture that allows easy accommodation of functional changes and 

asynchronous (re-)development of parts of the system. The dependency structure matrix has been used 

as a tool to analyze and compare alternative design decisions and quantify structural metrics e.g., 

modularity in large and complex software systems (MacCormack et al., 2006, Sosa et al., 2007a, Sosa, 

2008, Sangal et al., 2005, LaMantia et al., 2008).  

 

In this paper we study software systems architecture specifically designed for problems arising in 

scientific and engineering applications (Kelly and Sanders, 2008, Marques and Drummond, 2005). 

While some scientific computing software applications are primarily designed as a proof-of-concept 

tool, with the advent of more powerful hardware resources e.g., supercomputers, a growing number of 

scientific applications are being developed to perform large-scale simulation runs that were previously 

intractable (Trillinos, 2011, SciDAC, 2011). Unlike the one-time throwaway computer code, these 

simulation software applications are highly complex and large (IPSL-CM5, 2011) (millions of lines of 

code). The applications involve substantial investment in time and other expensive resources and tend 

to have lifecycles measured in tens of years. Some of the main concerns in the design of research 

software are to do with the correctness of the computed output and scalability of the software, 

especially with regard to high-performance and emerging hardware technology (Marques and 

Drummond, 2005). A distinguishing feature of the designers of such software applications is that they 

are highly trained scientists with little or no formal background in modern software engineering 

practices. The main objective of such software is to produce new scientific knowledge. The finished 

products typically are of very high quality and efficient (Heroux and Willenbring, 2009, Kelly and 

Sanders, 2008). On the other hand, being very focused on narrowly defined application domains, 

important software quality metrics e.g., usability (user interface), extensibility etc., may not be among 

the list of primary design objectives (Heroux and Willenbring, 2009, Morris, 2008).  

 

The main purpose of this work is to examine and understand the design structure of scientific 

computing research software by analyzing the interactions between design elements, with particular 

emphasis on metrics that quantify the modularity of design, the effect of changes in system’s 

architecture due to the need for porting the application to emerging high-performance computing 

system or the integration with external systems.   
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 In (MacCormack et al., 2006) the DSM technique is applied to study dependencies among system 

elements of two large-scale software applications.  It is noted that there exists a strong correspondence 

between the design structure of the software and the organization in which it is developed. The 

geographically distributed nature of the development team is reflected in the more modular 

architecture of the open-source       compared with the proprietary        , in which the 

developers have direct face-to-face interactions.  The identification of dominant subsystems or 

modules of software systems and their dependency analysis constitute key considerations in managing 

architectural evolution of complex software products (MacCormack et al., 2006, Sangal et al., 2005, 

Sosa et al. 2007a, Sosa et al., 2007b). As noted earlier, the design goals of scientific research software 

systems and the organization in which they are developed are somewhat different from that of 

commercial or general-purpose software systems (MacCormack et al., 2006) and therefore present 

itself as an important and interesting case-study. In our work we choose automatic differentiation 

(AD) software (see Griewank and Walther, 2008) - software applications that are concerned with the 

automatic computation of derivatives or sensitivities of mathematical functions that are given as 

computer programs. Our choice for this particular application type is influenced by the observation 

that computation or estimation of derivatives or sensitivities of outputs of a mathematical model with 

respect to its input parameters, is a frequently required step in many algorithms for solving scientific 

and engineering problems. Therefore, software tools implementing automatic differentiation of 

computer programs constitute appropriate test cases for scientific software applications that are 

intended to be a part of other major scientific applications. We choose ADOL-C (Griewank et al., 

1996) and CppAD (Bell, 2011) as representative AD software that are built utilizing ‘operator 

overloading’ technique. We note that the other main implementation technique for AD software, 

‘source transformation’, is not considered in this paper. Both the applications are available from 

COIN-OR (COIN-OR, 2011) project as open-source software under public license. 

2 METRICS FOR ANALYZING DESIGN STRUCTURE 

Given below is a description of structural metrics we use in this work.  

 

1. Characteristic path length. In an undirected graph, the average distance between nodes   and 

  is defined by,   
        

      
 , where     is the shortest path length (minimum number of edges) 

connecting the nodes.  

2. Clustering co-efficient. A measure of degree to which nodes in a graph tend to cluster 

together in an undirected graph is defined by,   
 

 
   

 
   , where    

     

        
, denotes the 

clustering coefficient of node  , with    being the number of nodes connected to node  , and    

being the actual number of edges between those    adjacent nodes. 

3. Nodal degree. The average degree of the nodes in the graph    
 

 
   

 
    where    is the 

number nodes adjacent to node   (also the degree of node  ). For directed graphs the degree of 

node   is the sum of its in-degree (number of directed edges pointing to node  ) and out-degree 

(number of directed edges pointing away from node   to other nodes).  

4. Strongly connected Components. A directed graph is called strongly connected if there is a 

directed path from each vertex in the graph to every other vertex. The strongly connected 

components of a directed graph are its maximal strongly connected sub-graphs. 

5. Propagation Cost. This is a measure of the proportion, on average, of design elements that 

are affected due to a change to a specific design element and is given by    
 
       , where 

   is the number of nodes reachable from node   using a directed path with minimum number 

of edges. 

 

We distinguish between functions that are explicitly implemented in the software under consideration 

(denoted user function) and the functions that are part of the software libraries (e.g., input/output 

functions). In our work user functions are the basic design elements (nodes in the associated directed 

graph, henceforth the call graph), and function   is said to depend on function   if it calls   from within 

its body, which is denoted by a mark in row   and column   of the associated DSM  (by a directed edge 

from node   to node   in the call graph). In order to extract the dependency information and to generate 

the static call graph we have used the gcc-based call-and-structure extractor developed by a research 
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team from The University of Groningen, the Netherlands (Telea et al., 2009).  

 

Table 1 – Structural Properties of ADOL-C and CppAD 

 

Software 

Nodes Directed Edges 

Files 
User 

Functions Files User Functions 

ADOL-C 60 271 66 703 

CppAD 66 80 67 175 
 

Table 1 displays the number of system elements (nodes) and the number of links (directed edges) in 

the two software tools under consideration. The column labelled ‘Files’ represent the number of files 

the functions are contained in. It is readily apparent that both the call graphs are very sparse i.e., only a 

small fraction of the possible edges are present. After constructing the DSM we use a strongly-

connected component partitioning tool (Hossain, 2010) to rearrange the DSM into block triangular 

form.  

  

ADOL-C CppAD 

Figure 1 Partitioned DSM of ADOL-C and CppAD 

 

In Figures 1, the DSM for ADOL-C and CppAD are displayed after the partitioning algorithm is 

applied to the user function call graph. An important observation that can be made from the figures is 

the absence of any feedback mark in the respective DSMs. This is also indicated by the number of 

strongly connected components being the same as the number of design elements in Table 2. From a 

graph-theoretic viewpoint, a triangular DSM is manifested in the acyclic (directed) nature of the 

associated function call graph. We note that ADOL-C project involves multiple (about ten) developers 

while CppAD is a one-person project. In scientific software development where computational 

efficiency is one of the main goals, running-time profiling is a necessary step.  Profiling tools e.g. 

‘gprof’ (Susan et al., 2004) usually provide information on whether a function is part of a cycle in the 

static call graph of the program.  In the context of static function call DSM, the presence of feed-back 

marks complicates the accurate profiling (computing time values). For example, functions   and   are 

mutually dependent in the call graph if function   calls function   which in turn calls function  . The 

execution time incurred in function   will include the time incurred in the called function  , whose 

running time, in turn, must include the time for executing function   - thereby invalidating the 

profiling procedure. Generally speaking, circular dependencies (direct or indirect recursions) are 

avoided to enable certain code optimization features in the compiler. We conjecture that for the 

software tools studied, circular dependencies have most likely been discovered early and reworked at 

the initial design phase.   
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Table 2- Design Structure Metrics 

 

Software 
Characteristic 

Path length, l 

Clustering co-

efficient, C 

Nodal 

Degree 

Number of 

Components 

Propagation 

Cost (%) 

ADOL-C 2.05005 0.080382 5.18819 271 3.41635 

CppAD 2.37373  0.0342364  4.375  80 6.64062 

 

Table 2 displays a suite of structural metrics and their values from the two DSMs. The propagation 

costs of 3.4 and 6.6 indicate that, on average, a change in the implementation of any function in the 

software has the potential of affecting only 3.4% and 6.6%, respectively, of functions. A similar 

observation with regard to propagation cost has been made in (MacCormack et al., 2006). Following 

Braha and Bar-Yam (Braha and Bar-Yam, 2007) we ignore the direction of the edges in the respective 

call graphs concerning the metrics ‘characteristic path length’ and ‘clustering coefficient’. This is a 

reasonable assumption since, in general, the caller and the called functions may exchange information 

via in- and out-parameters. Viewing the call-graph as an information flow network (Braha and Bar-

Yam, 2007), structural metrics such as characteristic path length, clustering co-efficient, and nodal 

degree and its distribution provide useful information about the architecture of the underlying product. 

From Table 2, we observe small average nodal degree and shorter average distance between any two 

nodes in the networks. On the other hand, the tendency of the related functions being highly 

interacting (measured by the clustering coefficient), is almost an order of magnitude smaller than that 

of the operating system software reported in (Braha and Bar-Yam, 2007).  

 

 

  

 

Figure 2 - Cumulative Frequency Vs. Degree (In-degree/Out-degree) of ADOL-C 

 

 

 

 

Figure 3 - Cumulative Frequency Vs. In-degree and Out-degree of CppAD 
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Figures 2 and 3 present cumulative (in-, -out) degree distributions of call graph nodes.  We note that 

the total nodal degree varies from 1 to 62 for ADOL-C and from 1 to 29 for CppAD with 

approximately 80% of the nodes having degree less than or equal to 8 for ADOL-C and 6 for CppAD. 

In other words, only a small fraction of the functions in both software tools are most relevant with 

regard to the functioning of the software. The degree distribution analysis provides local information 

only. To obtain global information on how function elements exert their influence on other functions 

we use an index that measures the centrality of a node by the number of shortest paths in the call graph 

containing that node.  For ADOL-C, function fail has been found to be included in the maximum 

number (16398) of shortest paths (directed) between any pair of nodes while for CppAD the 

corresponding function is constructor-special which is included in 2238 shortest paths. This 

observation is not surprising since ‘correctness’ of computed values is one of the main design goals in 

scientific computing software (Kelly and Sanders, 2008, Heroux and Willenbring, 2009). In case of 

CppAD, we note it heavily uses object-oriented features compared with ADOL-C and a constructor 

function is one of the most frequently called member function.  

3 CONCLUDING REMARKS 

In this paper we perform dependency analysis of function call graphs for two scientific research 

software tools. Unlike projects (e.g., computer operating systems) where formal software engineering 

practices are perceived important for their success, the main goal in scientific research software is the 

creation and validation of new scientific knowledge. The call graphs for the studied software tools 

display shorter characteristic path lengths, small nodal degrees, and small propagation costs, similar to 

general-purpose software such as operating systems (Braha and Bar-Yam, 2007, MacCormack et al., 

2006). On the other hand, a relatively small clustering coefficient in ADOL-C and CppAD points to a 

less modular design structure. Furthermore, absence of circular dependencies in the studied software 

can be attributed to the strong emphasis placed on the computational performance of the code (noting 

that recursive function calls, in general, are considered a hindrance to the performance enhancing code 

optimization e.g. ‘in-lining’ of functions, regularly performed by modern optimizing compilers).  

 

In addition to performing more detailed analyses of the structural metrics, there are a number of 

extensions to this work that we envision in future. First, it will be interesting to perform design 

structure analysis to compare and contrast scientific software from multiple application domains. 

Secondly, to obtain a better understanding of the architecture of software products from multiple 

application domains, it is helpful to develop domain-specific centrality metrics. For example, natural 

inquiries in this regard could be ‘how well does this software integrate into a larger and complex super 

system?’, ‘how sensitive is the software to new or emerging hardware technologies?’.  
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